Abstract
It has been argued that scene-selective areas in the human brain represent both the 3D structure of the local visual environment and low-level 2D features (such as spatial frequency) that provide cues for 3D structure. To evaluate the degree to which each of these hypotheses explains variance in scene-selective areas, we develop an encoding model of 3D scene structure and test it against a model of low-level 2D features. We fit the models to fMRI data recorded while subjects viewed visual scenes. The fit models reveal that scene-selective areas represent the distance to and orientation of large surfaces, at least partly independent of low-level features. Principal component analysis of the model weights reveals that the most important dimensions of 3D structure are distance and openness. Finally, reconstructions of the stimuli based on the model weights demonstrate that our model captures unprecedented detail about the local visual environment from scene-selective areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.