Abstract

Combating necrosis, by supplying nutrients and removing waste, presents the major challenge for engineering large three-dimensional (3D) tissues. Previous elegant work used 3D printing with carbohydrate glass as a cytocompatible sacrificial template to create complex engineered tissues with vascular networks (Miller et al. 2012, Nature Materials). The fragile nature of this material compounded with the technical complexity needed to create high-resolution structures led us to create a flexible sugar-protein composite, termed Gelatin-sucrose matrix (GSM), to achieve a more robust and applicable material. Here we developed a low-range (25–37˚C) temperature sensitive formulation that can be moulded with micron-resolution features or cast during 3D printing to produce complex flexible filament networks forming sacrificial vessels. Using the temperature-sensitivity, we could control filament degeneration meaning GSM can be used with a variety of matrices and crosslinking strategies. Furthermore by incorporation of biocompatible crosslinkers into GSM directly, we could create thin endothelialized vessel walls and generate patterned tissues containing multiple matrices and cell-types. We also demonstrated that perfused vascular channels sustain metabolic function of a variety of cell-types including primary human cells. Importantly, we were able to construct vascularized human noses which otherwise would have been necrotic. Our material can now be exploited to create human-scale tissues for regenerative medicine applications. Statement of SignificanceAuthentic and engineered tissues have demands for mass transport, exchanging nutrients and oxygen, and therefore require vascularization to retain viability and inhibit necrosis. Basic vascular networks must be included within engineered tissues intrinsically. Yet, this has been unachievable in physiologically-sized constructs with tissue-like cell densities until recently. Sacrificial moulding is an alternative in which networks of rigid lattices of filaments are created to prevent subsequent matrix ingress. Our study describes a biocompatible sacrificial sugar-protein formulation; GSM, made from mixtures of inexpensive and readily available bio-grade materials. GSM can be cast/moulded or bioprinted as sacrificial filaments that can rapidly dissolve in an aqueous environment temperature-sensitively. GSM material can be used to engineer viable and vascularized human-scale tissues for regenerative medicine applications.

Highlights

  • Cells were infected with enhanced green fluorescent protein (GFP)- or monomeric red fluorescent protein-labelled lentivirus at confluence and selected with puromycin for 7 days which produced >95% labelled cells confirmed by flow cytometry

  • IgH-monomeric red fluorescent protein (mRFP) was cloned into pSIN-PURO by PCR and HepG2 cells infected at a multiplicity of infection (MOI) of 20 and selected with puromycin for 2 weeks

  • Albumin in sampled media was quantified by enzymelinked immunosorbent assay (ELISA) using a human albumin ELISA kit (Bethyl labs)

Read more

Summary

Introduction

Ruiz-Cantu et al / Acta Biomaterialia 113 (2020) 339–349 works [3]. All tissues and organs require some vascularization and this developmental angiogenic process was critical to the evolution of higher organisms [4]. When fabricating tissue for regenerative medicine applications this network must be included intrinsically within the tissue matrix and even basic vascular networks in simple physiologically-sized constructs with tissue-like cell densities have been unachievable until recently [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call