Abstract

There are two challenging technological steps for robots in their way from factories to among people. The first to be taken is to obtain fluent mobility in unstructured, changing environments, and the second is to obtain the capability for intelligent communication with humans together with a fast, effective learning/adaptation to new work tasks. The first step has almost been taken today. The rapid development of sensor technology – especially inertial sensors and laser scanners – with constantly increasing processing power, which allows heavy image processing and techniques for simultaneous localization and mapping (SLAM), have made it possible to allow slowly moving robots to enter in the same areas with humans. However, if we compare the present capability of robots to animals, like our pets in homes, it can be said without no doubt that improvements are still possible and desirable. The second step is still far away. Traditional industrial robots are mechanically capable to change a tool and perform different work tasks, but due to the nature of factory work need for reprogramming is relatively minor and therefore interactive communication with the user and continuous learning are not needed. The most sophisticated programming methods allow task design, testing, and programming off-line in a simulation tool without any contact to the robot itself. Today’s commercial mobile service robots, like vacuum cleaners and lawn mowers, are limited to a single task by their mechanical construction. A multi-task service robot needs both mechanical flexibility and a high level of “intelligence” in order to carry out and learn several different tasks in continuous interaction with the user. Instead of being a “multi-tool” the robot should be capable of using different kinds of tools designed for humans. Due to fast development in mechatronics, hardware is not any more the main problem although the prices can be high. The bottlenecks are the human – robot interface (HRI) and the robot intelligence, which are strongly limiting both the information transfer from the user to the robot as well as the learning of new tasks. Despite huge efforts in AI and robotics research, the word “intelligence” has to be written today in quotes. Researchers have not been able to either model or imitate the complex functions of human brains or the human communication, thus today’s robots hardly have either the creativity or the capacity to think. The main requirement for a service robot HRI is to provide easy humanlike interaction, which on the one hand does not load the user too much and on the other hand is effective in the sense that the robot can be kept in useful work as much as possible. Note that learning of

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call