Abstract

This paper proposes a human-robot cooperative control of exoskeleton robot assisting muscle strength of a human upper extremity when lifting or transporting heavy objects. When a human wears a robot, the motions of the human and robot generate interaction, which is called HRI (Human-Robot Interaction). To generate reference motion from the interaction force, a pHRI model was developed using virtual mechanical impedance, and an experimental method to determine the impedance parameters of the pHRI model was proposed. The controller was developed in such a way that the desired motion will be controlled using dynamic model-based compensation. To verify the proposed control method, it was applied to an exoskeleton robot with 6-DOF for both arms. Motion-following-performance experiment and muscle-strength-assisting-effect experiment were conducted using this robot. Experimental results, the wearer of the exoskeleton robot can handle a small force was the heavy object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.