Abstract

Compliant physical interactions, interactive learning, and robust position control are crucial to improving the effectiveness and safety of rehabilitation robots. This paper proposes a human–robot cooperation control strategy (HRCCS) for lower limb rehabilitation robots. The high-level trajectory planner of the HRCCS consists of a trajectory generator, a trajectory learner, a desired trajectory predictor, and a soft saturation function. The trajectory planner can predict and generate a smooth desired trajectory through physical human–robot interaction (pHRI) in a restricted joint space and can learn the desired trajectory using the locally weighted regression method. Moreover, a triple-step controller was designed to be the low-level position controller of the HRCCS to ensure that each joint tracks the desired trajectory. A nonlinear disturbance observer is used to observe and compensate for total disturbances. The radial basis function neural networks (RBFNN) approximation law and robust term are adopted to compensate for observation errors. The simulation results indicate that the HRCCS is robust and can achieve compliant pHRI and interactive trajectory learning. Therefore, the HRCCS has the potential to be used in rehabilitation robots and other fields involving pHRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.