Abstract

We have found that glycolysis in human red blood cells under the hypoxic conditions found at high altitudes is connected with changes in enzyme activities and levels of various metabolic intermediates. The sensitivity of the four kinases to hypoxia results in 1) glycolytic hyperactivity leading to a higher intracellular energy state, and 2) accumulation of 2-3 DPG, whose role in the adaptation of red blood cell respiration to high altitude has been shown by previous research. PEP, 3PG , and G6P appear to be the main regulating intermediates in glycolysis in this system. The reason for the very large increase in G1- 6DP is still not clear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.