Abstract
The ability of human blood in vitro, and partially purified red blood cells, to metabolize leucovorin, or 5-formyltetrahydrofolate, has been examined. A radioenzymatic assay based upon entrapment of 5,10-methylenetetrahydrofolate, and other reduced folates after cycling to this form, into a stable ternary complex with thymidylate synthase and tritiated 5-fluoro-2′-deoxyuridine-5′-monophosphate was used to estimate reduced folate metabolites. Incubation of whole blood samples with ( R,S)5-formyltetrahydrofolate resulted in a time- and concentration-dependent extracellular accumulation of the reduced folates, 5-methyltetrahydrofolate, tetrahydrofolate, 10-formyltetrahydrofolate, and 5,10-methylenetetrahydrofolate. While accumulation with time was nonlinear, the tetrahydrofolate pool showed the greatest overall increase in concentration. 5-Methyltetrahydrofolate, which was the only reduced folate detected in plasma prior to introduction of ( R,S)5-formyltetrahydrofolate, accumulated more slowly than tetrahydrofolate. 10-Formyltetrahydrofolate and 5,10-methylenetetrahydrofolate accumulated even more slowly but exhibited nonlinear kinetic patterns similar to those of tetrahydrofolate and 5-methyltetrahydrofolate. When blood cells were removed by centrifugation, a complete loss of metabolic activity was observed. Exposure of purified red blood cells to ( R,S)5-formyltetrahydrofolate resulted in accumulation of extracellular reduced folates that was similar to that in whole blood samples while partially purified white blood cells exhibited little activity. Metabolism of the ( S) diastereomer of 5-formyltetrahydrofolate accounted for essentially all of the observed extracellular accumulation of reduced folates. We propose that red blood cell-mediated metabolism of 5-formyltetrahydrofolate could, in part at least, account for reduced folate accumulation in plasma when leucovorin is administered to humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.