Abstract

In this paper, we study the cognitive effectiveness of diagrammatic reasoning with proportional quantifiers such as most. We first examine how Euler-style diagrams can represent syllogistic reasoning with proportional quantifiers, building on previous work on diagrams for the so-called plurative syllogism (Rescher and Gallagher, 1965). We then conduct an experiment to compare performances on syllogistic reasoning tasks of two groups: those who use only linguistic material (two sentential premises and one conclusion) and those who are also given Euler diagrams corresponding to the two premises. Our experiment showed that (a) in both groups, the speed and accuracy of syllogistic reasoning tasks with proportional quantifiers like most were worse than those with standard first-order quantifiers such as all and no, and (b) in both standard and non-standard (proportional) syllogisms, speed and accuracy for the group provided with diagrams were significantly better than the group provided only with sentential premises. These results suggest that syllogistic reasoning with proportional quantifiers like most is cognitively complex, yet can be effectively supported by Euler diagrams that represent the proportionality relationships between sets in a suitable way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.