Abstract

In this study, human preterm amnion cells were investigated in 3-dimensional (3D) cell-matrix culture systems in an attempt to design therapeutic strategies for preterm premature rupture of the membranes. Three-dimensional collagen I and fibrin cell-containing biomatrices were created to mimic the architecture of native amnion. Amnion mesenchymal cells were embedded in 3D matrices, and epithelial cells were placed on top of these matrices. Cell viability and morphology were visualized by DiI-ac-LDL, F-actin, and nuclear staining. Proteolytic activity of matrix metalloproteinases (MMPs) was investigated using gelatine zymography. Preterm amnion epithelial and mesenchymal cells cultured in collagen I and fibrin matrices assume cell morphologies similar to those observed in vivo. Mesenchymal cells were capable of remodelling collagen I, as seen by extensive volume contraction, by 40% at day 1 and 80% at day 5. Matrix contraction was independent of the presence of epithelial cells, and could not be inhibited by GM6001 and/or aprotinin. No contraction was observed in fibrin matrices over 8 days. The migratory response of mesenchymal cells cultured in 3D fibrin matrices supplemented with fibronectin was associated with specific activated MMP-9. Three-dimensional fibrin matrices might be useful in amnion cell tissue engineering, including cell-matrix transplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.