Abstract

When a robot manipulator approaches a kinematic singular configuration, control strategies need to be employed to ensure safe and robust operation. If this manipulator is being controlled by a human through physical human-robot collaboration, the choice of strategy for handling singularities can have a significant effect on the feelings and impressions of the user. To date the preferences of humans during physical human-robot collaboration regarding strategies for managing kinematic singularities have yet to be thoroughly explored.This work presents an empirical study of a dampingbased strategy for handling singularities with regard to the preferences of the human operator. Two different parameters, damping rate and damping asymmetry, are tested using a double-blind A/B pairwise comparison testing protocol. Participants included two cohorts made up of the general public (n=51) and people working within a robotic research centre (n=18). In total 105 individual trials were performed. Results indicate a preference for a faster, asymmetric damping behavior that slows motions towards singularities whilst allowing for faster motions away.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.