Abstract

An anthropometric mannequin implemented in robotic modelling software has proved very useful in the simulation of static and semi-dynamic reachability envelopes. Its prediction of working postures has been verified to some extent during neutral buoyancy trials. While a robotic solution is useful for static analyses or rough estimates of simple movements, more realistic movement strategies need to be identified directly measuring astronauts' in-orbit behaviour. A set of experiments is to be performed as part of the EUROMIR '95 mission to the MIR orbiting station in which dynamic posture (i.e. posture and movement) measurements will be taken using the ELITE system. The data and analyses of the data will be used to animate the Alenia anthopometric mannequin and to develop movement algorithms more similar to those of a person in microgravity than the robotic solutions currently employed. This paper presents the experiments to be performed and the changes to Alenia's mannequin that will allow the model to effect movements according to the experimental results. It is aimed at expanding the dialog between the biomechanical and human factors disciplines started in this experiment to other potential end-users of the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call