Abstract

Human pose estimation aims at predicting the poses of human body parts in images or videos. Since pose motions are often driven by some specific human actions, knowing the body pose of a human is critical for action recognition. This survey focuses on recent progress of human pose estimation and its application to action recognition. We attempt to provide a comprehensive review of recent bottom-up and top-down deep human pose estimation models, as well as how pose estimation systems can be used for action recognition. Thanks to the availability of commodity depth sensors like Kinect and its capability for skeletal tracking, there has been a large body of literature on 3D skeleton-based action recognition, and there are already survey papers such as [1] about this topic. In this survey, we focus on 2D skeleton-based action recognition where the human poses are estimated from regular RGB images instead of depth images. We summarize the performance of recent action recognition methods that use pose estimated from color images as input, then show that there is much room for improvements in this direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.