Abstract

BackgroundMalaria is heterogeneously distributed across landscapes. Human population movement (HPM) could link sub-regions with varying levels of transmission, leading to the persistence of disease even in very low transmission settings. Malaria along the Thai–Myanmar border has been decreasing, but remains heterogeneous. This study aimed to measure HPM, associated predictors of travel, and HPM correlates of self-reported malaria among people living within malaria hotspots.Methods526 individuals from 279 households in two malaria hotspot areas were included in a prospective observational study. A baseline cross-sectional study was conducted at the beginning, recording both individual- and household-level characteristics. Individual movement and travel patterns were repeatedly observed over one dry season month (March) and one wet season month (May). Descriptive statistics, random effects logistic regressions, and logistic regressions were used to describe and determine associations between HPM patterns, individual-, household-factors, and self-reported malaria.ResultsTrips were more common in the dry season. Malaria risk was related to the number of days doing outdoor activities in the dry season, especially trips to Myanmar, to forest areas, and overnight trips. Trips to visit forest areas were more common among participants aged 20–39, males, individuals with low income, low education, and especially among individuals with forest-related occupations. Overnight trips were more common among males, and individual with forest-related occupations. Forty-five participants reported having confirmed malaria infection within the last year. The main place of malaria blood examination and treatment was malaria post and malaria clinic, with participants usually waiting for 2–3 days from onset fever to seeking diagnosis. Individuals using bed nets, living in houses with elevated floors, and houses that received indoor residual spraying in the last year were less likely to report malaria infection.ConclusionAn understanding of HPM and concurrent malaria dynamics is important for consideration of targeted public health interventions. Furthermore, diagnosis and treatment centres must be capable of quickly diagnosing and treating infections regardless of HPM. Coverage of diagnosis and treatment centres should be broad, maintained in areas bordering malaria hotspots, and available to all febrile individuals.

Highlights

  • This study aimed to measure Human population movement (HPM) patterns, associated predictors of travel, and HPM correlates of selfreported malaria (SRM) infections among people living within malaria hotspots on the Thai–Myanmar border

  • Summary stats of human population movement (HPM) patterns In total, 526 individuals from 279 households in the two cluster areas were included in the full prospective observational study, of which 249 individuals from 140 households were in the Cluster I and 277 individuals from 139 households were in the Cluster II

  • The results from this study suggest that HPM in these malaria hotspots is common, dynamic, and varies by season

Read more

Summary

Introduction

Human population movement (HPM) could link sub-regions with varying levels of transmission, leading to the persistence of disease even in very low transmis‐ sion settings. Human population movement (HPM) and travel patterns are important with regard to infectious disease epidemiology. Infectious diseases such as malaria are heterogeneously distributed across landscapes, perhaps especially in low transmission settings. HPM can link sub-regions with varying levels of transmission, leading to the persistence of disease even in very low transmission settings [1, 2]. Very low transmission settings might achieve local elimination in the absence of being linked to high transmission settings via HPM [3, 4]. HPM data, when coupled with malaria epidemiological data, can help to identify potential “sources” and “sinks” of malaria parasites with direct implications for malaria control and elimination efforts [7, 8]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.