Abstract

BackgroundThe human EED protein, a member of the superfamily of Polycomb group (PcG) proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA), the integrase enzyme (IN) and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells.ResultsDuring the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm.ConclusionOur data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic RNA packaging and virus assembly, resulting possibly from a mistrafficking of viral genomic RNA (gRNA) or gRNA/Gag complex. Nef reversed the EED negative effect on virus production, a function which required the integrity of the Nef N-terminal domain, but not its N-myristoyl group. The antagonistic effect of Nef correlated with a cellular redistribution of both EED and Nef.

Highlights

  • The human EED protein, a member of the superfamily of Polycomb group (PcG) proteins with WD40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA), the integrase enzyme (IN) and the Nef protein

  • The data obtained with Nef and EED were consistent with the known functions of PcG proteins, which participate in the maintenance of the silent state of chromatin in upper eukaryotes, such as in female X chromosome inactivation [14], and generally act as transcriptional repressors of homeotic genes

  • We found that EED isoforms 3 and 4 (EED3/4) had only a moderate antiviral activity on infecting virions, whereas at the late phase of virus replication, EED3/4 showed a strong negative effect on virus production

Read more

Summary

Introduction

The human EED protein, a member of the superfamily of Polycomb group (PcG) proteins with WD40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA), the integrase enzyme (IN) and the Nef protein. The data obtained with Nef and EED were consistent with the known functions of PcG proteins, which participate in the maintenance of the silent state of chromatin in upper eukaryotes, such as in female X chromosome inactivation [14], and generally act as transcriptional repressors of homeotic genes (reviewed in [15,16,17,18]). They were consistent with the finding that HIV-1 preferentially integrates into transcriptionally active regions of the host genome [19,20,21,22]. Regions of cellular genome unoccupied by EED or EED-containing multiprotein complexes might be preferred targets for proviral DNA integration

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call