Abstract

It is likely that arrhythmias should be avoided for therapies based on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CM) to be effective. Towards achieving this goal, we introduced light-activated channelrhodopsin-2 (ChR2), a cation channel activated with 480 nm light, into human embryonic stem cells (hESC). By using in vitro approaches, hESC-CM are able to be activated with light. ChR2 is stably transduced into undifferentiated hESC via a lentiviral vector. Via directed differentiation, hESC(ChR2)-CM are produced and subjected to optical stimulation. hESC(ChR2)-CM respond to traditional electrical stimulation and produce similar contractility features as their wild-type counterparts but only hESC(ChR2)-CM can be activated by optical stimulation. Here it is shown that a light sensitive protein can enable in vitro optical control of hESC-CM and that this activation occurs optimally above specific light stimulation intensity and pulse width thresholds. For future therapy, in vivo optical stimulation along with optical inhibition could allow for acute synchronization of implanted hPSC-CM with patient cardiac rhythms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call