Abstract

Human amniotic fluid (hAF) mesenchymal stem cells (MSCs) are commonly cultured in medium containing FBS. However, there are concerns about using animal serum in therapeutic applications due to the potential for immunogenic reactions and the risk of transmission of pathogens. For safety reasons, human platelet lysate (hPL) has been suggested as a replacement for FBS because it appears to be a natural source of growth factors. In this present study, it was investigated whether FBS could be substituted with hPL in hAF-MSCs culture without affecting their properties. Pooled hPL was generated by the freeze-thaw method. The concentration of hPL was selected after evaluation by MTT assay. The hAF-MSCs were cultured in FBS- or hPL-supplemented conditions and shared a fibroblast-like morphology. Cell proliferation assays showed that the growth characteristic of hAF-MSCs cultured in 10% hPL-supplemented media was similar to those cultured in 10% FBS-supplemented media. The expression of MSC markers did not differ between the cells cultured in the different conditions. The endothelial differentiation potential was also investigated. Reverse transcription-quantitative (RT-q)PCR revealed that induced cells supplemented with hPL showed an increase level of endothelial specific gene expression compared to the FBS-supplemented cells. Immunofluorescence analysis showed specific protein localization in both induced cell groups. Additionally, induced cells supplemented with hPL had the potential to form networks on Matrigel. This present study indicated that hPL could be used to culture and enhance the endothelial differentiation potential of hAF-MSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call