Abstract

Membrane transport pathways for transplacental transfer of the water-soluble vitamin pantothenate were investigated by assessing the possible presence of a Na(+)-pantothenate cotransport mechanism in the maternal facing membrane of human placental epithelial cells. The presence of Na(+)-pantothenate cotransport was determined from radiolabeled tracer flux measurements of pantothenate uptake using preparations of purified brush-border membrane vesicles. Compared with other cations the imposition of an inward Na+ gradient stimulated vesicle uptake of pantothenate to levels approximately 40-fold greater than those observed at equilibrium. The observed stimulation of pantothenate uptake was not the result of indirect electrostatic coupling to an inside positive Na+ diffusion potential. In the absence of Na+ and pantothenate concentration gradients an inside negative voltage difference induced a Na(+)-dependent net influx of pantothenate, suggesting the presence of an electrogenic Na(+)-pantothenate cotransport mechanism. The effect of biotin on the kinetics of Na(+)-dependent pantothenate uptake and the effect of pantothenate on the kinetics of Na(+)-dependent biotin uptake suggested that placental absorption of biotin and pantothenate from the maternal circulation occurs by a common Na+ cotransport mechanism in apical brush-border membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.