Abstract

BackgroundCholangiocyte senescence is an important pathological process in diseases such as primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Stem cell/induced pluripotent stem cell-derived exosomes have shown anti-senescence effects in various diseases. We applied novel organoid culture technology to establish and characterize cholangiocyte organoids (cholangioids) with oxidative stress-induced senescence and then investigated whether human placenta mesenchymal stem cell (hPMSC)-derived exosomes exerted a protective effect in senescent cholangioids.MethodsWe identified the growth characteristics of cholangioids by light microscopy and confocal microscopy. Exosomes were introduced concurrently with H2O2 into the cholangioids. Using immunohistochemistry and immunofluorescence staining analyses, we assessed the expression patterns of the senescence markers p16INK4a, p21WAF1/Cip1, and senescence-associated β-galactosidase (SA-β-gal) and then characterized the mRNA and protein expression levels of chemokines and senescence-associated secretory phenotype (SASP) components.ResultsWell-established cholangioids expressed cholangiocyte-specific markers. Oxidative stress-induced senescence enhanced the expression of the senescence-associated proteins p16INK4a, p21WAF1/Cip1, and SA-β-gal in senescent cholangioids compared with the control group. Treatment with hPMSC-derived exosomes delayed the cholangioid aging progress and reduced the levels of SASP components (i.e., interleukin-6 and chemokine CC ligand 2).ConclusionsSenescent organoids are a potential novel model for better understanding senescence progression in cholangiocytes. hPMSC-derived exosomes exert protective effects against senescent cholangioids under oxidative stress-induced injury by delaying aging and reducing SASP components, which might have therapeutic potential for PSC or PBC.

Highlights

  • Cholangiocyte senescence is an important pathological process in diseases such as primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC)

  • Additional methods Western blotting procedures, transmission electron microscopy (TEM) assessment of exosomes, RNA isolation and real-time quantitative reverse transcription polymerase chain reaction procedures, and human placenta mesenchymal stem cell (hPMSC) culture are described in the supplementary material

  • The cells were embedded in Matrigel and covered with conditional medium, which contained epidermal growth factor (EGF), fibroblast growth factor (FGF)10, hepatocyte growth factor (HGF), [Leu15]-gastrin I, and Wnt agonists (e.g., R-spondin 1) (Fig. 1a)

Read more

Summary

Introduction

Cholangiocyte senescence is an important pathological process in diseases such as primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC). Cell senescence characterized by activation of the senescence-associated secretory phenotype (SASP), which activates and reinforces the inflammatory reaction of bystander cells and attracts immune cells that influence the tissue repair process [3,4,5]. This facilitates the progression of chronic inflammatory diseases. Cellular senescence is an important pathological process in diseases such as primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC) [7,8,9]. Half of affected patients experience one or more episodes of acute cellular rejection, and ~ 25% develop recurrent disease [10] after transplantation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call