Abstract

Hypoxic-ischaemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although hypothermia therapy offers some neuroprotection, the recovery of neurological function is limited. Therefore, new synergistic therapies are necessary to improve the prognosis. Mesenchymal stem cell-based therapy is emerging as a promising treatment option for HIE. In this study, we studied the therapeutic efficacy of human placenta-derived mesenchymal stem cells (PD-MSCs) in the HIE rat model and analyzed the underlying therapeutic mechanisms. Rats were divided into 6 groups (n = 9 for each) as follows: control, HIE model, HIE + normal saline, and HIE + PD-MSC transplantation at days 7, 14 and 28 postpartum. Following PD-MSC transplantation, neurological behavior was evaluated using rotarod tests, traction tests, and the Morris water maze test. The degree of brain tissue damage was assessed by histological examination and Nissl staining. Expression levels of apoptosis-related proteins and inflammatory factors were quantified by Western blotting and enzyme-linked immunosorbent assays. Immunofluorescence was used to investigate the ability of PD-MSCs to repair the morphology and function of hippocampal neurons with hypoxic-ischaemic (HI) injury. PD-MSC transplantation enhanced motor coordination and muscle strength in HIE rats. This treatment also improved spatial memory ability by repairing pathological damage and preventing the loss of neurons in the cerebral cortex. The most effective treatment was observed in the HIE + PD-MSC transplantation at day 7 group. Expression levels of microtubule-associated protein-2 (MAP-2), B-cell lymphoma-2 (BCL-2), interleukin (IL)-10, and transforming growth factor (TGF -β1) were significantly higher in the HIE + PD-MSC treatment groups compared to the HIE group, whereas the levels of BCL-2-associated X protein (BAX), BCL-2-associated agonist of cell death (BAD), IL-1β and tumour necrosis factor α (TNF-α) were significantly lower. We demonstrated that intravenous injection of PD-MSC at 7, 14 and 28 days after intrauterine HI damage in a rat model could improve learning, memory, and motor function, possibly by inhibiting apoptosis and inflammatory damage. These findings indicate that autologous PD-MSC therapy could have potential application for the treatment of HIE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call