Abstract

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy®, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The in vitro properties, pharmacokinetics (PK), and drug-drug interaction (DDI) profile of BIC were characterised in vitro and in vivo. BIC is a weakly acidic, ionisable, lipophilic, highly plasma protein-bound BCS class 2 molecule, which makes it difficult to predict human PK using standard methods. Its systemic plasma clearance is low, and the volume of distribution is approximately the volume of extracellular water in nonclinical species. BIC metabolism is predominantly mediated by cytochrome P450 enzyme (CYP) 3A and UDP-glucuronosyltransferase 1A1. BIC shows a low potential to perpetrate clinically meaningful DDIs via known drug metabolising enzymes or transporters. The human PK of BIC was predicted using a combination of bioavailability and volume of distribution scaled from nonclinical species and a modified in vitro-in vivo correlation (IVIVC) correction for clearance. Phase 1 studies in healthy subjects largely bore out the prediction and supported the methods used. The approach presented herein could be useful for other drug molecules where standard projections are not sufficiently accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call