Abstract

Human parvovirus B19 (B19V) infection and damage of circulating angiogenic cells (CAC) results in dysfunctional endogenous vascular repair (DEVR) with secondary end-organ damage. Trafficking of CAC is regulated by SDF-1α and the respective receptor CXCR4. We thus tested the hypothesis of a deregulated CXCR4/SDF-1α axis in symptomatic B19V-cardiomyopathy. CAC were infected in vitro with B19V and transfected with B19V-components. Read-out were: CXCR4-expression and migratory capacity at increasing doses of SDF-1α. In 31 patients with chronic B19V-cardiomyopathy compared to 20 controls read-outs were from blood: migratory capacity, CXCR4 expression on CAC, serum SDF-1α; from cardiac biopsies: SDF-1α mRNA, HIF-1α mRNA, microvascular density, resident cardiac stem cells (CSC), transcardiac gradients of CAC. In vitro B19V-infected CAC showed up-regulation of surface CXCR4 with increased migratory capacity further enhanced by elevated SDF-1α concentrations. Overexpression of the B19V capsid protein VP2 was associated with this effect. Chronic B19V-cardiomyopathy patients showed increased numbers of ischaemia mobilised CAC but DEVR as well as diminished numbers of CAC after transcardiac passage. Cardiac microvascular density and CSC were significantly reduced in B19V-cardiomyopathy. We thus conclude that B19V infection has a direct VP2-mediated negative impact on trafficking of CAC in the presence of impaired cardiac regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.