Abstract
The covert-rapid-eye-movement (REM) sleep hypothesis of dreaming suggests that elements of REM sleep emerge during sleep onset, leading to vivid hypnagogic imagery. Based on parahippocampal electrocorticography of epileptic patients we found an increase in REM-like 1.5–3.0 Hz parahippocampal activity during wake–sleep transition, which peaks after on average 30 s of sleep onset, and reaches 82% of REM sleep value. The increase in 1.5–3.0 Hz parahippocampal activity followed alpha dropout, but did not relate to short-term fluctuations in alpha waves or sleep spindles. Non-REM sleep-specific slow (<1.25 Hz) activity showed a continuous increase during wake–sleep transition in both temporal scalp and parahippocampal recordings. It is suggested that REM-like parahippocampal rhythmic slow activity is an after-effect of hypothalamic wake-promoting centers’ switch-off at sleep onset, leading to an inhibited hippocampal functioning and hypnagogic hallucinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.