Abstract

Infection with genus beta human papillomaviruses (HPV) is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and 8 in patients with epidermodysplasia verruciformis (EV), a genetic skin disease. So far, it has been unknown how these viruses overcome cutaneous immune control allowing their persistence in lesional epidermis of these patients. Here we demonstrate that Langerhans cells, essential for skin immunosurveillance, are strongly reduced in HPV8-positive lesional epidermis from EV patients. Interestingly, the same lesions were largely devoid of the important Langerhans cells chemoattractant protein CCL20. Applying bioinformatic tools, chromatin immunoprecipitation assays and functional studies we identified the differentiation-associated transcription factor CCAAT/enhancer binding protein β (C/EBPβ) as a critical regulator of CCL20 gene expression in normal human keratinocytes. The physiological relevance of this finding is supported by our in vivo studies showing that the expression patterns of CCL20 and nuclear C/EBPβ converge spatially in the most differentiated layers of human epidermis. Our analyses further identified C/EBPβ as a novel target of the HPV8 E7 oncoprotein, which co-localizes with C/EBPβ in the nucleus, co-precipitates with it and interferes with its binding to the CCL20 promoter in vivo. As a consequence, the HPV8 E7 but not E6 oncoprotein suppressed C/EBPβ-inducible and constitutive CCL20 gene expression as well as Langerhans cell migration. In conclusion, our study unraveled a novel molecular mechanism central to cutaneous host defense. Interference of the HPV8 E7 oncoprotein with this regulatory pathway allows the virus to disrupt the immune barrier, a major prerequisite for its epithelial persistence and procarcinogenic activity.

Highlights

  • Human papillomaviruses (HPVs) are double-stranded DNA viruses, which infect epithelial cells of skin or mucosa and subsequently induce hyperproliferative lesions

  • The skin carcinogenic potential of genus beta HPV types, such as HPV8, is fully accepted in epidermodysplasia verruciformis (EV) patients and their contribution to the development of non-melanoma skin cancer in the general population is under investigation

  • We demonstrate that antigen-presenting Langerhans cells and the Langerhans cell attracting chemokine CC chemokine ligand 20 (CCL20) are strongly reduced in lesional skin of EV patients

Read more

Summary

Introduction

Human papillomaviruses (HPVs) are double-stranded DNA viruses, which infect epithelial cells of skin or mucosa and subsequently induce hyperproliferative lesions. Malignant progression of genus beta HPV-induced lesions, in particular in the case of HPV5 or 8, was first observed in patients suffering from epidermodysplasia verruciformis (EV), an inherited skin disease [2,3]. The genetic defect in the majority of EV patients has been identified as inactivating mutation in either EVER1 or EVER2 [14]. These genes code for endoplasmic reticulum channel proteins regulating cellular zinc balance.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call