Abstract

The functional inactivation of TP53 and Rb tumor suppressor proteins by the HPV-derived E6 and E7 oncoproteins is likely an important step in cervical carcinogenesis. We have previously shown siRNA technology to selectively silence both E6/E7 oncogenes and demonstrated that the synthetic siRNAs could specifically block its expression in HPV-positive cervical cancer cells. Herein, we investigated the potentiality of E6/E7 siRNA candidates as radiosensitizers of radiotherapy for the human cervical carcinomas. HeLa and SiHa cells were transfected with HPV E6/E7 siRNA; the combined cytotoxic effect of E6/E7 siRNA and radiation was assessed by using the cell viability assay, flow cytometric analysis and the senescence-associated β-galactosidase (SA-β-Gal) assay. In addition, we also investigated the effect of combined therapy with irradiation and E6/E7 siRNA intravenous injection in an in vivo xenograft model. Combination therapy with siRNA and irradiation efficiently retarded tumor growth in established tumors of human cervical cancer cell xenografted mice. In addition, the chemically-modified HPV16 and 18 E6/E7 pooled siRNA in combination with irradiation strongly inhibited the growth of cervical cancer cells. Our results indicated that simultaneous inhibition of HPV E6/E7 oncogene expression with radiotherapy can promote potent antitumor activity and radiosensitizing activity in human cervical carcinomas.

Highlights

  • Cervical cancer is the second most common cancer in women worldwide

  • We revealed that E6/E7-specific small interfering RNA (siRNA), silencing both E6 and E7 mRNA, was more efficacious than E6-specific siRNA [17]

  • With regard to TP53 and E7 protein levels, we found that siRNA 426 or 450 was able to silence E6/E7 expression more effectively than the other siRNAs (Figure 1B)

Read more

Summary

Introduction

Cervical cancer is the second most common cancer in women worldwide. Infection of the cervix with high-risk human papillomavirus (HPV), such as types 16 or 18, is a major cause of cervical cancer. The E5, E6 and E7 oncoproteins encoded by HPV play a critical role in cervical carcinoma [1,2,3]. Most HPV-associated cervical carcinomas, unlike many other cancers, carry the wild-type. The E7 binds to the retinoblastoma (RB) family of tumor suppressor proteins and disrupts RB/E2F complexes, thereby driving cell division [6]. The functional inactivation of TP53 and RB tumor suppressor proteins by the HPV-derived E6 and E7 oncoproteins is likely an important step in cervical carcinogenesis.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call