Abstract

The tumor suppressor ARF is transcribed from the INK4a/ARF locus in partly overlapping reading frames with the CDK inhibitor p16(Ink4a). ARF is able to antagonize the MDM2-mediated ubiquitination and degradation of p53, leading to either cell cycle arrest or apoptosis, depending on the cellular context. However, recent data point to additional p53-independent functions of mouse p19(ARF). Little is known about the dependency of human p14(ARF) function on p53 and its downstream genes. Therefore, we analysed the mechanism of p14(ARF)-induced cell cycle arrest in several human cell types. Wild-type HCT116 colon carcinoma cells (p53(+/+)p21(CIP1+/+) 14-3-3sigma(+/+)), but not p53(-/-) counterparts, underwent G(1) and G(2) cell cycle arrest following infection with a p14(ARF)-adenovirus. In p21(CIP1-/-) cells, p14(ARF) did not induce G(1) or G(2) arrest, while 14-3-3sigma(-/-) counterparts were mainly arrested in G(1), pointing to essential roles of p21(CIP1) in G(1) and G(2) arrest and cooperative roles of p21 and 14-3-3sigma in ARF-mediated G(2) arrest. Our data demonstrate a strict p53 and p21(CIP1) dependency of p14(ARF)-induced cell cycle arrest in human cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.