Abstract

Human embryonic stem cells (hESCs) offer a platform to bridge what we have learned from animal studies to human biology. Using oligodendrocyte differentiation as a model system, we show that sonic hedgehog (SHH)-dependent sequential activation of the transcription factors OLIG2, NKX2.2 and SOX10 is required for sequential specification of ventral spinal OLIG2-expressing progenitors, pre-oligodendrocyte precursor cells (pre-OPCs) and OPCs from hESC-derived neuroepithelia, indicating that a conserved transcriptional network underlies OPC specification in human as in other vertebrates. However, the transition from pre-OPCs to OPCs is protracted. FGF2, which promotes mouse OPC generation, inhibits the transition of pre-OPCs to OPCs by repressing SHH-dependent co-expression of OLIG2 and NKX2.2. Thus, despite the conservation of a similar transcriptional network across vertebrates, human stem/progenitor cells may respond differently to those of other vertebrates to certain extrinsic factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.