Abstract

Neural stem cells (NSC) have self-renewal and multipotent properties and may serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's, Alzheimer's, and spinal cord injury (SCI). Obtaining NSCs from adult human olfactory bulb (OB) would avoid ethical issues associated with the use of embryonic tissue, and provide an easily accessible cell source that would preclude the need for invasive brain surgery. We used Agilent and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture; and a multicellular tissue from postmortem adult substantia nigra (SN), an area rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell populations. Careful...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call