Abstract
Human subjects viewed an electronically generated bright square. Horizontal movements of the two eyes were recorded with the scleral coil method. The dynamic properties of vergence movements induced by movement of the bright square were investigated for the following three kinds of stimulus motion: (a) both the size and the binocular disparity of the square changed together, in such a way as to exactly mimic the retinal image changes produced by a real object's motion in depth; (b) the changing-size component in (a) was present with no disparity component; (c) the changing-disparity component in (a) was present with no size component. The gain and phase of the ocular vergence responses to these three stimuli were computed. Ocular vergence movements were induced by changing size in all five subjects. Responses during binocular viewing were higher and less variable than responses during monocular viewing. Size oscillations induced ocular vergence oscillations with a phase lead of up to 65 deg relative to target size for frequencies of stimulation below 1.0 Hz. Vergence oscillation amplitudes were of the order of 10 min of arc and maximal for frequencies of 0.4-0.7 Hz. Ocular vergence movements were not induced by changes in target size in one dimension nor by flickering a stationary square. Ocular vergence movements induced by size changes were entirely transient with no sustained component: vergence responses to disparity were sustained. When the stimulus combined size change with disparity change in the ratio characteristic of a real moving object, vergence tracking was more accurate and less noisy than when the eyes were stimulated with the disparity component alone. The ocular vergence response induced by the combination of size change with disparity change was accurately predicted by linearly adding the vergence response produced by the size change alone to the vergence response produced by the disparity change alone: combined stimulation produced no evidence of non-linear interaction between responses to size change and to disparity change. The properties of vergence responses induced by changing size and by changing disparity showed several close correlations with the corresponding data on psychophysical sensitivity for motion-in-depth sensation. We suggest that responses to changing size contribute to the accuracy with which ocular vergence tracks real objects moving in depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.