Abstract

The design and preparation of wound dressings that redress the protease imbalance in chronic wounds is an important goal of wound healing and medical materials science. Chronic wounds contain high levels of tissue and cytokine-destroying proteases including matrix metalloprotease and neutrophil elastase. Thus, the lowering of excessive protease levels in the wound environment by wound dressing sequestration prevents the breakdown of extracellular matrix proteins and growth factors necessary for wound healing. Phosphorylated cotton wound dressings were prepared to target sequestration of proteases from chronic wound exudate through a cationic uptake binding mechanism involving salt bridge formation of the positively charged amino acid side chains of proteases with the phosphate counterions of the wound dressing fiber. Dressings were prepared by applying sodium hexametaphosphate and diammonium phosphate in separate formulations to cotton gauze by pad/dry/cure methods. Phosphorylated cotton dressings were assessed for their ability to lower elastase and collagenase activity. The phosphorylated cotton dressings lowered elastase and collagenase activity 40-80% more effectively than the untreated cotton wound dressings under conditions that mimic chronic wound exudate. Efficacy of the phosphorylated cotton was found to be related to the level of phosphorylation and a lower pH due to protonated phosphate at the surface of the dressing. The capacity of the modified gauze to sequester continued elastase secretions similar to that found in a chronic wound over a 24-h period was retained within a 80% retention of elastase sequestration and was dose-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call