Abstract

Ciguatoxins (CTXs) are emerging marine neurotoxins representing the main cause of ciguatera fish poisoning, an intoxication syndrome which configures a health emergency and constitutes an evolving issue constantly changing due to new vectors and derivatives of CTXs, as well as their presence in new non-endemic areas.The study applied the neuroblastoma cell model of human origin (SH-SY5Y) to evaluate species-specific mechanistic information on CTX toxicity. Metabolic functionality, cell morphology, cytosolic Ca2+i responses, neuronal cell growth and proliferation were assessed after short- (4–24h) and long-term exposure (10days) to P-CTX-3C.In SH-SY5Y, P-CTX-3C displayed a powerful cytotoxicity requiring the presence of both Veratridine and Ouabain. SH-SY5Y were very sensitive to Ouabain: 10 and 0.25nM appeared the optimal concentrations, for short- and long-term toxicity studies, respectively, to be used in co-incubation with Veratridine (25μM), simulating the physiological and pathological endogenous Ouabain levels in humans.P-CTX-3C cytotoxic effect, on human neurons co-incubated with OV (Ouabain+Veratridine) mix, was expressed starting from 100pM after short- and 25pM after long-term exposure. Notably, P-CTX-3C alone at 25nM induced cytotoxicity after 24h and prolonged exposure.This human brain-derived cell line appears a suitable cell-based-model to evaluate cytotoxicity of CTX present in marine food contaminated at low toxic levels and to characterize the toxicological profile of other/new congeners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call