Abstract

IntroductionClinically, significant stroke injury results from ischemia-reperfusion (IR), which induces a deleterious biphasic opening of the blood-brain barrier (BBB). Tissue plasminogen activator (tPA) remains the sole pharmacological agent to treat ischemic stroke. However, major limitations of tPA treatment include a narrow effective therapeutic window of 4.5 h in most patients after initial stroke onset and off-target non-thrombolytic effects (e.g., the risk of increased IR injury). We hypothesized that ameliorating BBB damage with exogenous human neural stem cells (hNSCs) would improve stroke outcome to a greater extent than treatment with delayed tPA alone in aged stroke mice. MethodsWe employed middle cerebral artery occlusion to produce focal ischemia with subsequent reperfusion (MCAO/R) in aged mice and administered tPA at a delayed time point (6 h post-stroke) via tail vein. We transplanted hNSCs intracranially in the subacute phase of stroke (24 h post-stroke). We assessed the outcomes of hNSC transplantation on pathophysiological markers of stroke 48 h post-stroke (24 h post-transplant). ResultsDelayed tPA treatment resulted in more extensive BBB damage and inflammation relative to MCAO controls. Notably, transplantation of hNSCs ameliorated delayed tPA-induced escalated stroke damage; decreased expression of proinflammatory factors (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), decreased the level of matrix metalloprotease-9 (MMP-9), increased the level of brain-derived neurotrophic factor (BDNF), and reduced BBB damage. ConclusionsAged stroke mice that received delayed tPA treatment in combination with hNSC transplantation exhibited reduced stroke pathophysiology in comparison to non-transplanted stroke mice with delayed tPA. This suggests that hNSC transplantation may synergize with already existing stroke therapies to benefit a larger stroke patient population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.