Abstract
The kidney is the most important organ for the excretion of pharmaceuticals and their metabolites. Among the complex structures of the kidney, the proximal tubule and renal interstitium are major targets of nephrotoxins. Despite its importance, there are only a few in silico models for predicting human nephrotoxicity for drug candidates. Here, we present quantitative structure-activity relationship (QSAR) models for three common patterns of drug-induced kidney injury, i.e., tubular necrosis, interstitial nephritis, and tubulo-interstitial nephritis. A support vector machine (SVM) was used to build the binary classification models of nephrotoxin versus non-nephrotoxin with eight fingerprint descriptors. To build the models, we constructed two types of data sets, i.e., parent compounds of pharmaceuticals (251 nephrotoxins and 387 non-nephrotoxins) and their major urinary metabolites (307 nephrotoxins and 233 non-nephrotoxins). Information on the nephrotoxicity of the pharmaceuticals was taken from clinical trial and postmarketing safety data. Though the mechanisms of nephrotoxicity are very complex, by using the metabolite information, the predictive accuracies of the best models for each type of kidney injury were better than 83% for external validation sets. Software to predict nephrotoxicity is freely available from our Web site at http://bmdrc.org/DemoDownload .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.