Abstract

Oxidative base damage leads to alteration of genomic information and is implicated as a cause of aging and carcinogenesis. To combat oxidative damage to DNA, cells contain several DNA glycosylases including OGG1, NTH1 and the Nei-like proteins, NEIL1 and NEIL2. A third Nei-like protein, NEIL3, is composed of an amino-terminal Nei-like domain and an unknown carboxy-terminal domain. In contrast to the other well-described DNA glycosylases, the DNA glycosylase activity and in vivo repair function of NEIL3 remains unclear. We show here that the structural modeling of the putative NEIL3 glycosylase domain (1-290) fits well to the known Escherichia coli Fpg crystal structure. In spite of the structural similarity, the recombinant NEIL3 and NEIL3(1-290) proteins do not cleave any of several test oligonucleotides containing a single modified base. Within the substrates, we detected AP lyase activity for single-stranded (ss) DNA but double-stranded (ds) DNA. The activity is abrogated completely in mutants with an amino-terminal deletion and at the zinc-finger motif. Surprisingly, NEIL3 partially rescues an E. coli nth nei mutant from hydrogen peroxide sensitivity. Taken together, repair of certain base damage including base loss in ssDNA may be mediated by NEIL3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.