Abstract

Brain imaging studies have shown that observation of both bodily movements and abstract motion displays complying with human kinematics activate the observer's motor cortex. However, it is unknown whether the same processes are active in the two conditions. Here, we addressed this issue using transcranial magnetic stimulation (TMS) to directly compare cortico-spinal excitability during observation of actions and motion stimuli that complied with or violated normal human kinematics.We found that kinematics significantly modulated the motor-evoked potentials (MEPs) produced by TMS during observation of both human and abstract motion stimuli. However, only the temporal unfolding of cortico-spinal excitability during observation of human movements significantly correlated with instantaneous stimulus velocity. This correlation was present for normal movements and also for a subset of the movements having unnatural kinematics. Furthermore, bodily movements for which we found no correlation between MEPs and stimulus velocity produced significantly higher MEPs.Our novel results suggest a dissociation in how human movements and abstract motion displays engage the observer's motor system. Specifically, while both stimulus types significantly activate the observer's motor cortex, only bodily movements produce patterns of cortico-spinal excitability that closely follow the velocity profile of the observed movement. This internal “re-enactment” of observed bodily movements seems to be only partially attuned to normal human kinematics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.