Abstract
In recent years, movement detection and gait recognition methods using different techniques emerge in an endless stream. On the one hand, wearable sensors need be worn by the detecting target and the method based on camera requires line of sight. On the other hand, radio frequency signals are easy to be impaired. In this paper, we propose a novel multi-layer filter of channel state information (CSI) to capture moving individuals in dynamic environments and analyze his/her gait periodicity. We design and evaluate an efficient CSI subcarrier feature difference to the multi-layer filtering method leveraging principal component analysis (PCA) and discrete wavelet transform (DWT) to eliminate the noises. Furthermore, we propose the profile matching mechanism for movement detection and the gait periodicity analysis mechanism for human gait. Experimental results in different environments indicate that our approach performs identification with an average accuracy of 94%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.