Abstract

PurposeThe aim of this paper is to develop autonomous mobile home healthcare robots, which are capable of observing patients’ motions, recognizing the patients’ behaviours based on observation data, and providing automatically calling for medical personnel in emergency situations. The robots to be developed will bring about cost‐effective, safe and easier at‐home rehabilitation to most motor‐function impaired patients (MIPs).Design/methodology/approachThe paper has developed following programs/control algorithms: control algorithms for a mobile robot to track and follow human motions, to measure human joint trajectories, and to calculate angles of lower limb joints; and algorithms for recognizing human gait behaviours based on the calculated joints angle data.FindingsA Hidden Markov Model (HMM) based human gait behaviour recognition taking lower limb joint angles and body angle as input was proposed. The proposed HMM based gait behaviour recognition is compared with the Nearest Neighbour (NN) classification methods. Experimental results showed that a human gait behaviour recognition using HMM can be achieved from the lower limb joint trajectory with higher accuracy than compared classification methods.Originality/valueThe research addresses human motion tracking and recognition by a mobile robot. Human gait behaviour recognition is HMM based lower limb joints and body angle data from extracted from kinect sensor at the mobile robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.