Abstract
With the deep integration of science and technology and culture, the estimation of human movements in dance video images will become an important application field of computer vision technology, which can be used not only for professional dancers’ movement correction, dance self-help teaching, and other application scenarios but also for athletes’ movement analysis. Therefore, it will greatly promote the implementation of teaching students in accordance with their aptitude by applying information technology to estimate dancers’ movements and postures in real time and obtaining information of classroom dance teaching status in time. In this paper, human motion recognition in dance video images is studied based on an attitude estimation algorithm. When the number of experiments reaches 20, the average value of deep learning algorithm and particle swarm optimization algorithm is 76.23 and 75.23, respectively, while the average value of attitude estimation algorithm in this paper is 77.95. Therefore, the average results of attitude estimation algorithm in this paper are slightly higher than those of other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.