Abstract
In human-robot collaborative manufacturing, industrial robots would work alongside human workers who jointly perform the assigned tasks seamlessly. A human-robot collaborative manufacturing system is more customised and flexible than conventional manufacturing systems. In the area of assembly, a practical human-robot collaborative assembly system should be able to predict a human worker’s intention and assist human during assembly operations. In response to the requirement, this research proposes a new human-robot collaborative system design. The primary focus of the paper is to model product assembly tasks as a sequence of human motions. Existing human motion recognition techniques are applied to recognise the human motions. Hidden Markov model is used in the motion sequence to generate a motion transition probability matrix. Based on the result, human motion prediction becomes possible. The predicted human motions are evaluated and applied in task-level human-robot collaborative assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.