Abstract

In this article, a novel motion model-based particle filter implementation is proposed to classify human motion and to estimate key state variables, such as motion type, i.e. running or walking, and the subject's height. Micro-Doppler spectrum is used as the observable information. The system and measurement models of human movements are built using three parameters (relative torso velocity, height of the body, and gait phase). The algorithm developed has been verified on simulated and experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.