Abstract

BackgroundExperimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties.Methods and FindingsHuman mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one.ConclusionsThe combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.

Highlights

  • Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV) that spread in 2003 and 2004 from the Guangdong province of southern China to 32 countries in Asia, Europe, and North America, resulting in over 8,000 cases and 774 deaths [1,2]

  • Synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection

  • Because antibody-dependent enhancement of viral replication has been observed in macrophages for one member of the coronavirus family, we investigated whether a similar phenomenon occurs with SARS-CoV [25]

Read more

Summary

Introduction

Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV) that spread in 2003 and 2004 from the Guangdong province of southern China to 32 countries in Asia, Europe, and North America, resulting in over 8,000 cases and 774 deaths [1,2]. Because the virus responsible for SARS—SARS-CoV—spread by close person-to-person contact and killed 10% of the people it infected, health experts feared a world-wide epidemic. This was avoided by the World Health Organization issuing a global alert and warning against unnecessary travel to affected areas and by public-health officials isolating patients and their close contacts. Sporadic cases of SARS have been contained locally

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call