Abstract

WiFi Access Points (APs) can be used to offload data or computation tasks while users are commuting. However, due to APs&#x2019; limited coverage, offloading performance is heavily impacted by the users&#x2019; mobility. This work proposes to leverage human mobility to inform offloading tasks, taking a data based approach leveraging granular mobility datasets from two cities: Porto and Beijing. We define Offloading Regions (ORs) as areas where a commuter&#x2019;s mobility would enable offloading, and propose an unsupervised learning methodology to extract ORs from mobility traces. Then, we characterise and analyse ORs according to offloading opportunity metrics such as type, availability, total time to offload, and offloading delay. Results show that in 50&#x0025; of the trips, users spend more than 48&#x0025; of the travel time inside ORs extracted according to the proposed methodology. The ability to predict the next ORs would benefit offloading orchestration. Offloading mobility predictability, although crucial, proves to be challenging, expressed by the poor predictive performance of well-known models (<inline-formula> <tex-math notation="LaTeX">$\approx $ </tex-math></inline-formula> 37&#x0025; acc. for the best predictor). We show that mobility regularity properties improve predictive performance up to <inline-formula> <tex-math notation="LaTeX">$\approx $ </tex-math></inline-formula> 35&#x0025;. Finally, we look into the impact of further OR extraction and prediction parameters. We show that the exploration phase length does not impact the discovery of low relevance ORs, and that both filtering low relevance OR and predicting multiple ORs increase predictability. By characterising the trade-off between mobility predictability and offloading opportunities in transit, we highlighting the need for offloading systems to adopt hybrid strategies, i.e., mixing opportunistic and predictive strategies. The conclusions and findings on offloading mobility properties are likely to generalise for varied urban scenarios given the high degree of similarity between the results obtained for the two different and independently collected mobility datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.