Abstract
After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on epidemic models that integrate the wide range of features characterizing human mobility and the many options available to public health organizations for responding to a pandemic. Here we present a comprehensive computational and theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing the invasion dynamics of the epidemics at the metapopulation level.
Highlights
The human mobility flows that determine the spreading of infectious diseases and the control measures based on limiting or constraining human mobility are considered in the contingency planning of several countries [1]
The target of these control measures is the decrease of travel to/from the areas affected by the epidemic outbreak and the corresponding decline of infected individuals reaching countries not yet affected by the epidemic
Global Epidemic and Mobility model (GLEaM) is composed of three different layers [13]: (i) the population layer that integrates census areas for a total of 3,362 subpopulations around major transportation hubs in 220 countries of the world with a resolution up to Ju6Ju [21]; (ii) the human mobility layer that integrates both commuting flows collected from various sources in more than 30 countries and airline traffic flows provided by the International Air Transport Association (IATA) database [22]; and (iii) the disease dynamics layer that implements a refined SEIR-like model [23] taking into account the specific etiology of the H1N1 pandemic (H1N1pdm) [18]
Summary
The human mobility flows that determine the spreading of infectious diseases and the control measures based on limiting or constraining human mobility are considered in the contingency planning of several countries [1]. We use the Global Epidemic and Mobility model (GLEaM) [13] that, fully integrating high resolution demographic and mobility data, allows the calibration to the H1N1pdm data of the invasion during the early stage of the epidemic and the exploration of hypothetical scenarios in which reductions in the international travel to/from Mexico with different timing and magnitude are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.