Abstract

One of the main lines of research in the discipline of mobility mining is the development of predictors able to anticipate human travel behaviour in great detail. However, access to the high-resolution spatio-temporal data on which most existing solutions are based is rather limited due to multiple factors, e.g. costly access to third-party data. These restrictions give rise to a problem of developing predictors of human mobility in most setting, since the amount of data available to train these prediction models is insufficient. This paper explores the feasibility of using a public data source such as Twitter to predict the number of trips at the nationwide level. The proposed approach combines a large set of geotagged Twitter posts with an open data source published by the Spanish government on traveller mobility based on mobile phone location. Both datasets are used as input to Machine Learning models to validate the use of Twitter data for improving the prediction of these models. The results show that Twitter data have considerable value as a predictor of large-scale human mobility, especially for Long Short-Term Memory (LSTM) models. As a result, the relevance of this work resides in demonstrating that the use of Twitter could be considered as an alternative to substantially enhance the prediction of mobility within a country when it is combined with other open data sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.