Abstract

The physiological role of lactoferrin (LF) is still unclear, but it has been suggested to be responsible for primary defence against microbial infections. Many different unique functions have been attributed to LF, including DNA and RNA binding, and transport into the nucleus, where LF binds to specific DNA sequences and activates transcription. Here we present evidence that in addition to the above (and below) mentioned functions LF binds ATP with a stoichiometry of 1 mole of nucleotide per mole of the protein and a Kd = 0.3 mM. The ATP-binding site is localized in the C-terminal domain of LF, in contrast to the antibacterial and polyanion-binding sites, which are located in the N-terminal domain. Binding of ATP by LF leads to dissociation of its oligomeric forms and to a change of the protein's interaction with polysaccharides, DNA and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.