Abstract

Nonalcoholic fatty liver disease (NAFLD), characterized by excessive hepatic lipid accumulation, imposes serious challenges on public health worldwide. Breastfeeding has been reported to reduce the risk of NAFLD. Extracellular vesicles (EVs) are bilayer membrane vesicles released from various cells into the extracellular space, participating in multiple life processes. Whether EVs from human milk exert metabolic benefits against NAFLD is worth investigating. In this study, the EVs were isolated from human milk collected from healthy mothers and quantified. Functional analyses were performed using the NAFLD mouse model and free fatty acid (FFA)-stimulated mouse primary hepatocytes. The results showed that human milk-derived EVs could effectively alleviate high fat diet-induced hepatic steatosis and insulin resistance in mice with NAFLD via inhibiting lipogenesis and increasing lipolysis. The FFA-induced lipid accumulation was also inhibited in hepatocytes after treatment with human milk-derived EVs. Mechanistically, the human milk derived-EVs cargo (proteins and miRNAs), which linked to lipid metabolism, may be responsible for these beneficial effects. The findings of this study highlighted the therapeutic benefits of human milk-derived EVs and provided a new strategy for NAFLD treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.