Abstract

This study aims to quantify concentrations of minerals and trace elements in human milk (HM) and infant formula (IF) and evaluate associations with medical, social, environmental, and demographic variables. A prospective, case series study of 170 nursing mothers was made. HM samples were obtained from full-term (colostrum, intermediate and mature HM) and preterm (mature HM) mothers. Variables of interest were assessed by a questionnaire. For comparison, IF samples (n = 30) were analyzed in a cross-sectional study. Concentrations of 35 minerals, essential and toxic trace elements were quantified, 5 for the first time: thallium in HM and IF; strontium in preterm HM; and gallium, lithium and uranium in IF. In preterm and full-term HM, levels of selenium (p < 0.001) were significantly lower than recommended and were associated with low birth weight (p < 0.002). Cesium and strontium concentrations were significantly higher than recommended (p < 0.001). Associations were observed between arsenic and residence in an urban area (p = 0.013), and between lead and smoking (p = 0.024) and well-water consumption (p = 0.046). In IF, aluminum, vanadium, and uranium levels were higher than in HM (p < 0.001); uranium, quantified for the first time, was 100 times higher in all types of IF than in HM. Our results indicate that concentrations of most trace elements were within internationally accepted ranges for HM and IF. However, preterm infants are at increased risk of nutritional deficiencies and toxicity. IF manufacturers should reduce the content of toxic trace elements.

Highlights

  • Human milk (HM) is considered the gold standard for infant nutrition, both for fullterm and preterm infants [1,2]

  • Comparing the characteristics of the two groups, full-term mothers and preterm mothers, both are homogeneous in terms of no significant differences except in the mean gestational age (39 vs. 31 weeks, p < 0.05) and the birth weight of the newborns (2990 g in term deliveries vs. 1445 g in preterm deliveries, p < 0.05)

  • Ca concentrations were higher in mature HM compared with colostrum (p = 0.006) and preterm HM (p = 0.024) compared with mature term HM

Read more

Summary

Introduction

Human milk (HM) is considered the gold standard for infant nutrition, both for fullterm and preterm infants [1,2]. The composition of HM is not always the same, the fat and energy content varies from the beginning to the end of the HM intake, it follows a diurnal pattern and varies between each individual, depending on the type of delivery, lactation period, maternal diet and area of residence [6,7]. It is widely reported that maternal diet influences the nutritional composition of breast milk [8]. Most studies have focused on component analysis or nutritional aspects of HM, but only a few studies have confirmed the relationship between trace elements in HM and psychosocial variables [9]. Donated human milk (DHM) can be used in preterm infants when HM is insufficient or not available

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call