Abstract
Recently, we discovered that beta-thujaplicin (BT) induces metallothionein (MT) expression in mouse keratinocytes, both in vivo and in vitro. However, the molecular mechanisms by which BT exerts its biological effects have not been elucidated. The purpose of this study is to explore the signal transduction pathway involved in the MT mRNA induction by BT. Using a HaCaT keratinocyte cell line, Northern blotting was performed for analyzing the human MT-IIA mRNA expression levels in combination with BT and a number of protein kinase (PK) inhibitors including H7, HA1004 and a PKC-specific inhibitor chelerythrin. CAT assays with the MT-IIA gene promorter-CAT construct were conducted for examining the transcriptional regulation by BT of MT. A free radical scavenger N-acetylcysteine (NAC) was used for analyzing a role of oxidative stress for the MT gene induction by BT. BT increased MT-IIA gene transcript levels and CAT activity in a dose-dependent fashion in HaCaT cells. The increase in MT-IIA mRNA levels and CAT activity were completely suppressed by H7 but not by HA1004. In addition, chelerythrin prevented BT-inducible MT-IIA promoter activation. Furthermore, NAC suppressed BT-inducible MT-IIA promoter activation. These results demonstrate that BT is a potent activator of the MT-IIA gene promoter and that PKC activation and reactive oxygen species are implicated in BT-inducible MT-IIA gene expression. BT may be a useful tool for dissecting the signal transduction pathway mediating MT-IIA promoter activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.