Abstract

Fluorinated ethylene propylene (FEP) vessels are of significant interest for therapeutic cell biomanufacturing applications due to their chemical inertness, hydrophobic surface, and high oxygen permeability. However, these properties also limit the adhesion and survival of anchorage-dependent cells. Here, we develop novel plasma polymer coatings to modify FEP surfaces, enhancing the adhesion and expansion of human mesenchymal stromal cells (hMSCs). Similar to commercially available tissue culture polystyrene vessels, oxygen-rich or nitrogen-rich surface chemistries can be achieved using this approach. While steam sterilization increased the roughness of the coatings and altered the surface chemistry, the overall wettability and oxygen or nitrogen-rich nature of the coatings were maintained. In the absence of proteins during initial cell attachment, cells adhered to surfaces even in the presence of chelators, whereas adhesion was abrogated with chelator in a protein-containing medium, suggesting that integrin-mediated adhesion predominates over physicochemical tethering in normal protein-containing cell seeding conditions. Albumin adsorption was more elevated on nitrogen-rich coatings compared to the oxygen-rich coatings, which was correlated with a higher extent of hMSC expansion after 3 days. Both the oxygen and nitrogen-rich coatings significantly improved hMSC adhesion and expansion compared to untreated FEP. FEP surfaces with nitrogen-rich coatings were practically equivalent to commercially available standard tissue culture-treated polystyrene surfaces in terms of hMSC yields. Plasma polymer coatings show significant promise in expanding the potential usage of FEP-based culture vessels for cell therapy applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.