Abstract

For bone tissue engineering, corals have long history to be used as scaffold to promote bone regeneration. However the use of a lot of corals may damage their habitates. For this reason, a strategy to mimic coral in a synthetic form is needed. As an ideal scaffold, synthetic coral must provide structure and initial support for cell attachment and proliferation. The aim of this study was to investigate the attachment and proliferation of human Mesenchymal Stem Cells (h-MSC) on synthetic coral scaffold, to provide information on the behavior of h-MSC on the designated scaffold. Synthetic coral scaffolds were prepared from bovine gelatine and CaCO3 with 5:5 in 10% w/v concentration in aquadest. Sodium citrate was used as dispersant in the suspension. Gelatin-CaCO3 suspension was moulded in a plastic cover of 24 well plate, then freezed at -20°C for 24 hours, freeze dried for 24 hours and continued by dehydrothermal crosslinking for 72 hours. After the fabrication, synthetic coral scaffolds were subjects to cover the bottom of the well for cell culture. Human Mesenchymal Stem Cells (h-MSC) were seeded and divided into 2 groups, control group without scaffold and the one with scaffold. All groups were incubated for 3, 6, and 24 hours. Cells attatchment were determined by deduction of the cells unattached from total cells seeding. Proliferation of h-MSC were done in 3 groups ie., control group without scaffold, scaffold only and scaffold incorporated Platelet Rich Plasma (PRP) in the bottom of well. All groups were incubated for 24, 48 and 72 hours. Human Mesenchymal Stem Cells attached faster to synthetic coral scaffold than the control. Its proliferation behavior was faster in the scaffold incorporated PRP, showing better interaction of scaffold and cells with the incorporation of morphogenetic factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call