Abstract

We tested the ability of human mesenchymal stem cells (hMSCs) to deliver a biological pacemaker to the heart. hMSCs transfected with a cardiac pacemaker gene, mHCN2, by electroporation expressed high levels of Cs+-sensitive current (31.1+/-3.8 pA/pF at -150 mV) activating in the diastolic potential range with reversal potential of -37.5+/-1.0 mV, confirming the expressed current as I(f)-like. The expressed current responded to isoproterenol with an 11-mV positive shift in activation. Acetylcholine had no direct effect, but in the presence of isoproterenol, shifted activation 15 mV negative. Transfected hMSCs influenced beating rate in vitro when plated onto a localized region of a coverslip and overlaid with neonatal rat ventricular myocytes. The coculture beating rate was 93+/-16 bpm when hMSCs were transfected with control plasmid (expressing only EGFP) and 161+/-4 bpm when hMSCs were expressing both EGFP+mHCN2 (P<0.05). We next injected 10(6) hMSCs transfected with either control plasmid or mHCN2 gene construct subepicardially in the canine left ventricular wall in situ. During sinus arrest, all control (EGFP) hearts had spontaneous rhythms (45+/-1 bpm, 2 of right-sided origin and 2 of left). In the EGFP+mHCN2 group, 5 of 6 animals developed spontaneous rhythms of left-sided origin (rate=61+/-5 bpm; P<0.05). Moreover, immunostaining of the injected regions demonstrated the presence of hMSCs forming gap junctions with adjacent myocytes. These findings demonstrate that genetically modified hMSCs can express functional HCN2 channels in vitro and in vivo, mimicking overexpression of HCN2 genes in cardiac myocytes, and represent a novel delivery system for pacemaker genes into the heart or other electrical syncytia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.